How Too Much Calcium Can Break Your Bones
http://www.greenmedinfo.com/blog/how-too-much-calcium-can-break-your-bones
Did you know that most calcium supplements on the market today are basically limestone? Yes, that's chalk. Conceal it within a capsule, a slickly glazed tablet, or in the form of a silky smooth liquid, and it is magically transformed into a "calcium supplement": easy to swallow, "good for the bones" and a very profitable commodity for both the dietary supplement and mining industries. After all, a sizable portion of the Earth's crust is composed of the stuff.
Calcium carbonate comes very cheap. But does it work? A review published in Osteoporosis International Aug. 2008 concluded that calcium monotherapy (without vitamin d) actually increases the rate of fracture in women. If we believe the results of this study, it would appear that calcium alone may do nothing to prevent bone fracture or the loss of bone quality. Were this the end of the story, we might write off the $100 or more we spend on calcium supplements every year as a loss, and start drinking more milk. Not so quick!
In the Harvard Nurses' Health Study, a review tracking 78,000 nurses for 12 years found that the more cow's milk they consumed, the higher rate of bone fracture they experienced; in the study, the relative risk of hip fracture was 45% higher in those women who drank two or more glasses of milk per day versus those who drank one glass or less.
In fact, in countries where both dairy consumption and overall calcium levels in the diet are the lowest, bone fracture rates are also the lowest; conversely, in cultures like the United States where calcium consumption is among the highest in the world, so too are the fracture rates among the highest (see: The China Study).
Osteoporosis, after all, is a complex disease process, involving lack of strenuous exercise, chronic inflammation, multiple mineral and vitamin deficiencies, inadequate production of steroid hormones, dietary incompatibilites and many other known and unknown factors, the least of which is in any probability related to a lack of elemental calcium in the diet. Also, osteoporosis, as defined by X-ray analysis, e.g. Dual-emission X-ray absorptiometry (DXA) scans, can only directly measure bone mineral density and not structural integrity/strength, which is the real-world indicator of whether your bone will resist breaking when under the trauma, say, of a serious fall.
If we rule out drug (e.g. steroids, synthroid, acid-blockers) and hyperparathyroidism-induced osteoporosis, arguably the two main contributing factors associated with lower-than-normal bone mineral density are:
1) Dietary Acidosis: caused by the excessive consumption of acid forming foods like starchy grains, dairy (excluding goat's milk) and meat, all of which result in the leaching of the alkaline mineral stores in our bones. (Additionally, the consumption of highly acidic substances like coffee, alcohol, sugar, over the counter and prescribed drugs, and even the metabolic byproducts of chronic stress can all put the acid/alkaline balance beyond the tipping point). The flip-side is the under-consumption of alkalinizing fruits and vegetables, which disburden the mineral stores within the skeletal system of their sacrificial, acid-neutralizing role.
2) Malabsorption Syndrome: caused in large part by the excessive consumption of wheat, cow's milk products, soy (non-fermented) and corn.* All four of these foods, in fact, can be used to produce industrial adhesives, e.g .wheat = book binding glue, cow's milk protein (casein) = Elmer's glue, soy = plywood glue, corn = cardboard glue, and while not a problem for everyone, for many, their ingestion leads to a disruption of the absorptive capacity of the villi in the intestines by producing a "gluey coating," contributing to inflammation and atrophy of the villi. Other causes include dysbiosis, an overgrowth of unfriendly and undergrowth of friendly bacteria in the alimentary canal, as well as acute and/or chronic stress which depletes the glutamine without which the intestinal villi die (villi cell turnover occurs within 2 days, indicating even acute bouts of stress of short duration can cause profound damage). You don't see a lack of calcium or Boniva in this picture, do you?
Fortunately these two factors are completely preventable and treatable through dietary and lifestyle changes. It is increasingly clear that osteoporosis is not caused by a lack of calcium; to the contrary, it appears that excessive calcium intake may actually cause greater bone fracture rates, especially later in life! After all, the traditional Chinese peasant diet, based as it is on eating a calcium-poor, plant-based diet, included approximately 250 mg of food calcium a day – not the 1200 mg (or more!) a day the National Osteoporosis Foundation claims is necessary for women and men over 40 to maintain strong bones.
Paradoxically, not only does the aforementioned hypothetical Chinese peasant have less dense bones than your average Westerner, but s(he) also has incomparably stronger bones. In fact, the Chinese have no traditional word for osteoporosis, and this is at least a 3,000 year old language!
These facts beg for a scientific explanation. A Dutch researcher by the name of Thijs Klompmaker, in his 2000 article "Excessive Calcium Causes Osteoporosis," provides a brilliant explanation as to why too much calcium interferes with bone health. According to Klompmaker's analysis, the consumption of excessive calcium introduced through diary products and mineral supplementation may be making our bones weaker.
Due to the fact that excess calcium can deposit into soft tissues, leading to osteoarthritis, muscle cramping, insomnia, constipation, kidney stones, and increased rates of breast and prostate cancers (note: calcium crystals like hydroxylapatite (bone meal) can be mitogenic, stimulating proliferation of cells, and are responsible for th e screen detectability), the body prevents "calcium overload" by shunting the extra calcium into the bone, where it is stored until it can be safely excreted.
This can be a life-saving mechanisms because excess calcium in the blood can lead to the accumulation and destabilization of plaque in the arteries, can exert a hypertensive effect on the heart muscle, and may even induce cardiac arrest. In fact, according to two meta-analyses published in the British Journal of Medicine last year, 500 mg of supplemental elemental calcium a day increases the risk of heart attack by at least 24%!
There is a price to be paid for having to continually sequester excess calcium into the bone, which is that it stimulates the accelerated replication of osteoblasts (bone-building cells), and when osteoblasts replicate approximately 60-70% die as they become part of the new bone mineral matrix they lay down. Because there are only a fixed number of progenitor cells and replication cycles available to each cell, in a given lifetime, the osteoblasts become prematurely senescent and incapable of replicating at a rate rapid enough to keep up with the osteoclasts, which break down bad bone.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.